Skip to main content
Log in

A robust pendant-type cross-linked anion exchange membrane (AEM) with high hydroxide conductivity at a moderate IEC value

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel pendant-type cross-linked anion exchange membrane (pc-AEM) was successfully synthesized using a pre-synthesis approach to precisely control the IEC value and the degree of cross-linking. The physical properties of the pc-AEMs and the non-cross-linked pc-AEMs as well as Nafion 117 were determined, and the results were systematically compared. It was found that the synthesized pc-AEMs show much better dimensional retention capacity than the non-cross-linked pc-AEM and Nafion 117. In addition, the mechanical strength of the pc-AEMs was also remarkably enhanced. By increasing the IEC value of the pc-AEMs to the same level of Nafion 117, the highest ionic conductivity of 0.036 S/cm at 80 °C was reached. The remarkable enhancement of conductivity is chiefly attributed to the construction of highly efficient ionic transport channels resulting from the combined pendant-type and cross-linked architectures of the pc-AEMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Scheme 2
Scheme 3
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Wee JH (2007) Applications of proton exchange membrane fuel cell systems. Renew Sust Energy Rev 11:1720

    Article  Google Scholar 

  2. Bing YH, Liu HS, Zhang L, Ghosh D, Zhang JJ (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39:2184

    Article  Google Scholar 

  3. Asensio JA, Sanchez EM, Gomez-Romero P (2010) Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem Soc Rev 39:3210

    Article  Google Scholar 

  4. Zhou YK, Neyerlin K, Olson TS et al (2010) Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci 3:1437

    Article  Google Scholar 

  5. Chen ZW, Higgins D, Yu AP, Zhang L, Zhang JJ (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167

    Article  Google Scholar 

  6. Cheng FY, Chen J (2012) Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts. Chem Soc Rev 41:2172

    Article  Google Scholar 

  7. Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membr Sci 377:1

    Article  Google Scholar 

  8. Zhang Y, Li J, Ma L, Cai W, Cheng H (2015) Recent developments on alternative proton exchange membranes: strategies for systematic performance improvement. Energy Technol 3:675

    Article  Google Scholar 

  9. Yu Xu P, Zhou K, Lu Han G, Gen Zhang Q, Mei Zhu A, Lin Liu Q (2014) Fluorene-containing poly(arylene ether sulfone)s as anion exchange membranes for alkaline fuel cells. J Membr Sci 457:29

    Article  Google Scholar 

  10. Zhang Y, Li C, Liu X et al (2016) Fabrication of a polymer electrolyte membrane with uneven side chains for enhancing proton conductivity. RSC Adv 6:79593

    Article  Google Scholar 

  11. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535

    Article  Google Scholar 

  12. Zawodzinski TA, Derouin C, Radzinski S et al (1993) Water-uptake by and transport through Nafion 117 membranes. J Electrochem Soc 140:1041

    Article  Google Scholar 

  13. Hsu WY, Gierke TD (1983) Ion transport and clustering in nafion perfluorinated membranes. J Membr Sci 13:307

    Article  Google Scholar 

  14. Hibbs MR, Hickner MA, Alam TM, McIntyre SK, Fujimoto CH, Cornelius CJ (2008) Transport properties of hydroxide and proton conducting membranes. Chem Mater 20:2566

    Article  Google Scholar 

  15. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43

    Article  Google Scholar 

  16. Li Q, Liu L, Miao Q, Jin B, Bai R (2014) Hydroxide-conducting polymer electrolyte membranes from aromatic ABA triblock copolymers. Polym Chem 5:2208

    Article  Google Scholar 

  17. Pan J, Lu S, Li Y, Huang A, Zhuang L, Lu J (2010) High-performance alkaline polymer electrolyte for fuel cell applications. Adv Funct Mater 20:312

    Article  Google Scholar 

  18. Asazawa K, Yamada K, Tanaka H, Oka A, Taniguchi M, Kobayashi T (2007) A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew Chem Int Ed 46:8024

    Article  Google Scholar 

  19. Sanabria-Chinchilla J, Asazawa K, Sakamoto T, Yamada K, Tanaka H, Strasser P (2011) Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways. J Am Chem Soc 133:5425

    Article  Google Scholar 

  20. Wang Y, Li L, Hu L, Zhuang L, Lu J, Xu B (2003) A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun 5:662

    Article  Google Scholar 

  21. Varcoe JR, Slade RCT, Yee ELH, Poynton SD, Driscoll DJ, Apperley DC (2007) Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with properties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells. Chem Mat 19:2686

    Article  Google Scholar 

  22. Lai AN, Zhuo YZ, Lin CX et al (2016) Side-chain-type phenolphthalein-based poly(arylene ether sulfone nitrile)s anion exchange membrane for fuel cells. J Membr Sci 502:94

    Article  Google Scholar 

  23. He S, Liu L, Wang X, Zhang S, Guiver MD, Li N (2016) Azide-assisted self-crosslinking of highly ion conductive anion exchange membranes. J Membr Sci 509:48

    Article  Google Scholar 

  24. Wang Y-J, Qiao J, Baker R, Zhang J (2013) Alkaline polymer electrolyte membranes for fuel cell applications. Chem Soc Rev 42:5768

    Article  Google Scholar 

  25. Robertson NJ, Kostalik HA, Clark TJ, Mutolo PF, Abruna HD, Coates GW (2010) Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. J Am Chem Soc 132:3400

    Article  Google Scholar 

  26. Wang GG, Weng YM, Chu D, Chen RR, Xie D (2009) Developing a polysulfone-based alkaline anion exchange membrane for improved ionic conductivity. J Membr Sci 332:63

    Article  Google Scholar 

  27. Pan J, Chen C, Li Y et al (2014) Constructing ionic highway in alkaline polymer electrolytes. Energy Environ Sci 7:354

    Article  Google Scholar 

  28. Gebel G, Moore RB (2000) Small-angle scattering study of short pendant chain perfuorosulfonated ionomer membranes. Macromolecules 33:4850

    Article  Google Scholar 

  29. Divisek J, Eikerling M, Mazin V, Schmitz H, Stimmingc U, Volfkovich YM (1998) A study of capillary porous structure and sorption properties of nafion proton-exchange membranes swollen in water. J Electrochem, Soc, p 145

    Google Scholar 

  30. Smitha B, Sridhar S, Khan AA (2005) Solid polymer electrolyte membranes for fuel cell applications—a review. J Membr Sci 259:10

    Article  Google Scholar 

  31. Phu DS, Lee CH, Park CH, Lee SY, Lee YM (2009) Synthesis of crosslinked sulfonated poly(phenylene sulfide sulfone nitrile) for direct methanol fuel cell applications. Macromol Rapid Commun 30:64

    Article  Google Scholar 

  32. Pan J, Li Y, Zhuang L, Lu J (2010) Self-crosslinked alkaline polymer electrolyte exceptionally stable at 90 °C. Chem Commun 46:8597

    Article  Google Scholar 

  33. Han J, Peng H, Pan J et al (2013) Highly stable alkaline polymer electrolyte based on a poly(ether ether ketone) backbone. ACS Appl Mater Interfaces 5:13405

    Article  Google Scholar 

  34. Wu L, Pan Q, Varcoe JR et al (2015) Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains. J Membr Sci 490:1

    Article  Google Scholar 

  35. Li N, Wang L, Hickner M (2014) Cross-linked comb-shaped anion exchange membranes with high base stability. Chem Commun 50:4092

    Article  Google Scholar 

  36. Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cell 5:187

    Article  Google Scholar 

  37. Li D, Chen J, Zhai M et al (2009) Hydrocarbon proton-conductive membranes prepared by radiation-grafting of styrenesulfonate onto aromatic polyamide films. Nucl Instrum Methods B 267:103

    Article  Google Scholar 

  38. Kellner M, Radovanovic P, Matovic J, Liska R (2014) Novel cross-linkers for asymmetric poly-AMPS-based proton exchange membranes for fuel cells. Des Monomers Polym 17:372

    Article  Google Scholar 

  39. Jo TS, Ozawa CH, Eagar BR, Brownell LV, Han D, Bae C (2009) Synthesis of sulfonated aromatic poly(ether amide)s and their application to proton exchange membrane fuel cells. J Polym Sci Polym Chem 47:485

    Article  Google Scholar 

  40. Zhang Y, Lim C, Cai W et al (2014) Design and synthesis of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries. RSC Adv 83:43857

    Article  Google Scholar 

  41. Li J, Cai W, Zhang Y, Cheng H (2014) Rigid-flexible hybrid proton-exchange membranes with improved water-retention properties and high stability for fuel cells. Energy Technol 2:685

    Article  Google Scholar 

  42. Zhang Y, Rupesh R, Cai W et al (2014) Influence of chemical microstructure of single-ion polymeric electrolyte membranes on performance of lithium-ion batteries. ACS Appl Mater Interfaces 6:17534

    Article  Google Scholar 

  43. Liu Y, Zhang Y, Pan M et al (2016) A mechanically robust porous single ion conducting electrolyte membrane fabricated via self-assembly. J Membr Sci 507:99

    Article  Google Scholar 

  44. Meziane R, Bonnet J-P, Courty M, Djellab K, Armand M (2011) Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim Acta 57:14

    Article  Google Scholar 

  45. Jiang DD, Yao Q, McKinney MA, Wilkie CA (1999) TGA/FTIR studies on the thermal degradation of some polymeric sulfonic and phosphonic acids and their sodium salts. Polym Degrad Stabil 63:423

    Article  Google Scholar 

  46. Li J, Cai W, Zhang Y, Chen Z, Xu G, Cheng H (2015) Novel polyamide proton exchange membranes with bi-functional sulfonimide bridges for fuel cell applications. Electrochim Acta 151:168

    Article  Google Scholar 

  47. Li J, Cai W, Zhang Y, Xu G, Cheng H (2015) 3D-branched rigid-flexible hybrid sulfonated polyamide for proton exchange membranes (PEMs) in fuel cell applications. Energy Technol 3:155

    Article  Google Scholar 

  48. Eikerling M, Kornyshev AA, Kuznetsov AM, Ulstrup J, Walbran S (2001) Mechanisms of proton conductance in polymer electrolyte membranes. J Phys Chem B 105:3646

    Article  Google Scholar 

  49. Paddison SJ, Paul R (2002) The nature of proton transport in fully hydrated Nafion[registered sign]. Phys Chem Chem Phys 4:1158

    Article  Google Scholar 

  50. Xu PY, Zhou K, Han GL, Zhang QG, Zhu AM, Liu QL (2014) Effect of fluorene groups on the properties of multiblock poly(arylene ether sulfone)s-based anion-exchange membranes. ACS Appl Mater Interfaces 6:6776

    Article  Google Scholar 

  51. Zhang Y, Ting J, Rupesh R et al (2014) Fabrication of a proton exchange membrane via blended sulfonimide functionalized polyamide. J Mater Sci 49:3442. doi:10.1007/s10853-014-8055-0

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge support of the National Natural Science Foundation of China (Nos. 21233006, 21473164, and 21603197), Natural Science Foundation of Hubei Province of China (No. 2016CFB181) and Fundamental Research Funds for the Central University, China University of Geosciences, Wuhan (No. CUG150620, CUG150615).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, C., Yang, Z. et al. A robust pendant-type cross-linked anion exchange membrane (AEM) with high hydroxide conductivity at a moderate IEC value. J Mater Sci 52, 3946–3958 (2017). https://doi.org/10.1007/s10853-016-0656-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0656-3

Keywords

Navigation