Skip to main content
Log in

The effect of liquid crystal fillers on structure and properties of liquid crystalline shape memory polyurethane composites II: 4-hexadecyloxybenzoic acid

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to better understand the interrelation between liquid crystal fillers and functional polymers, a series of liquid crystalline shape memory polyurethane composites (LC-SMPUCs), named shape memory polyurethane (SMPU)–4-hexadecyloxybenzoic acid (HOBA) composites, are prepared by incorporating HOBA into SMPU based on a polyethylene glycol (PEG) soft segment. The results demonstrate that the dimerization structure of HOBA is maintained in the as-prepared SMPU–HOBA composites, facilitating liquid crystalline properties. Characterization results display smectic C phase upon heating, while the isotropic temperature shifts to a higher temperature, broadening the temperature range of the liquid crystalline phase. The SMPU–HOBA composites form a two-phase separated structure containing a SMPU phase and a HOBA phase; the incorporated HOBA can promote crystallizability of both soft and hard segments of SMPU, while crystalline hard phases are maintained within the high temperature range. Thus, SMPU–HOBA composites demonstrate a two-step modulus change upon heating that releases a triple-shape memory effect. The final shape fixing ratio is higher than 99%, and the final shape recovery ratio reaches 90%. Therefore, the SMPU–HOBA composites successfully provide a desirable combination of liquid crystalline properties and triple-shape memory properties, making them ideal candidates for smart sensor, smart labels, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhao Q, Qi HJ, Xie T (2015) Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 49–50:79–120

    Article  Google Scholar 

  2. Hager MD, Bode S, Weber C, Schubert US (2015) Shape memory polymers: past, present and future developments. Prog Polym Sci 49–50:3–33

    Article  Google Scholar 

  3. Liu YJ, Du HY, Liu LW, Leng JS (2014) Shape memory polymers and their composites in aerospace applications: a review. Smart Mater Struct 23(2):023001

    Article  Google Scholar 

  4. Meng H, Li G (2013) A review of stimuli-responsive shape memory polymer composites. Polymer 54:2199–2221

    Article  Google Scholar 

  5. Kumar KSS, Biju R, Nair CPR (2013) Progress in shape memory epoxy resins. React Funct Polym 73:421–430

    Article  Google Scholar 

  6. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C (2012) Stimulus-responsive shape memory materials: a review. Mater Des 33:577–640

    Article  Google Scholar 

  7. Lu HB, Lu CR, Huang WM, Leng JS (2015) Chemo-responsive shape memory effect in shape memory polyurethane triggered by inductive release of mechanical energy storage undergoing copper (II) chloride migration. Smart Mater Struct 24(7):035018–035018

    Article  Google Scholar 

  8. Singhal P, Small W, Cosgriff-Hernandez E, Maitland DJ, Wilson TS (2014) Low density biodegradable shape memory polyurethane foams for embolic biomedical applications. Acta Biomat 10:67–76

    Article  Google Scholar 

  9. Ronda JC, Del Rio E, Lligadas G, Galia M, Cadiz V, Meier M (2011) Shape memory polyurethanes from renewable polyols obtained by ATMET polymerization of glyceryl triundec-10-enoate and 10-undecenol. Macromol Chem Phy 212:1392–1399

    Article  Google Scholar 

  10. Ji FL, Hu JL, Han JP (2011) Shape memory polyurethane-ureas based on isophorone diisocyanate. High Perform Polym 23:177–187

    Article  Google Scholar 

  11. Zhang YM, Wang C, Pei XQ, Wang QH, Wang TM (2010) Shape memory polyurethanes containing azo exhibiting photoisomerization function. J Mater Chem 20:9976–9981

    Article  Google Scholar 

  12. Zhang DW, Liu YJ, Leng JS (2010) Magnetic field activation of thermoresponsive shape-memory polymer with embedded micron sized Ni powder. Adv Mater Res 123–125:995–998

    Article  Google Scholar 

  13. Zhang DW, Leng JS, Liu YJ (2008) Influence of radialization dosage on shape memory effect of polystyrene copolymer. Adv Mater Res 47–50:690–693

    Article  Google Scholar 

  14. Li L, Li Y, Li JS, Yao L, Mak A, Ko F, Qin L (2008) Antibacterial and nontoxic nano silver PLLA composites for tissue engineering. Adv Mater Res 47–50:849–852

    Article  Google Scholar 

  15. Lan X, Leng JS, Liu YJ, Du SY (2008) Investigate of electrical conductivity of shape-memory polymer filled with carbon black. Adv Mater Res 47–50:714–717

    Article  Google Scholar 

  16. Golbang A, Kokabi M (2010) Magnetic Field Actuation of shape Memory Nanocomposites. Adv Mater Res 123–125:999–1002

    Article  Google Scholar 

  17. Sun L, Huang WM, Wang CC, Ding Z, Zhao Y, Tang C, Gao XY (2014) Polymeric shape memory materials and actuators. Liq Cryst 41:277–289

    Article  Google Scholar 

  18. Kasi RM, Ahn SK, Deshmukh P, Gopinadhan M, Osuji CO (2011) Side-chain liquid crystalline polymer networks: exploiting nanoscale smectic polymorphism to design shape-memory polymers. ACS Nano 5:3085–3095

    Article  Google Scholar 

  19. Hiraoka K, Tashiro T, Kobayashi M, Kazama R, Sagano W (2010) Symmetry and stimulus response of chiral smectic liquid-crystalline elastomers. In: Khoo IC (ed) Proceedings of SPIE, liquid crystals XIV, California, 1–2 and 4 August 2010

  20. Finkelmann H, Happ M, Portugal M, Ringsdorf H (1978) Liquid-crystalline polymers with biphenyl-moieties as mesogenic group. Macromol Chem Phy 179:2541–2544

    Article  Google Scholar 

  21. Sonin AS, Churochkina NA, Kaznacheev AV (2008) Polymer liquid crystalline composite for optical irradiation control. Polym Sci Ser B 50:30–34

    Article  Google Scholar 

  22. Ahir SV, Tajbakhsh AR, Terentjev EM (2006) Self-assembled shape-memory fibers of triblock liquid-crystal polymers. Adv Funct Mater 16:556–560

    Article  Google Scholar 

  23. Chen SJ, Yuan HM, Zhuo HT, Chen SG, Yang HP, Ge ZC, Liu JH (2014) Development of liquid-crystalline shape-memory polyurethane composites based on polyurethane with semi-crystalline reversible phase and hexadecyloxybenzoic acid for self-healing applications. J Mater Chem C 2:4203–4212

    Article  Google Scholar 

  24. Chen SJ, Yuan HM, Ge ZC, Chen SG, Zhuo HT, Liu JH (2014) Insights into liquid-crystalline shape-memory polyurethane composites based on an amorphous reversible phase and hexadecyloxybenzoic acid. J Mater Chem C 2:1041–1049

    Article  Google Scholar 

  25. Chen SJ, Yuan HM, Chen SG, Yang HP, Ge ZC, Zhuo HT, Liu JH (2014) Development of supramolecular liquid-crystalline polyurethane complexes exhibiting triple-shape functionality using a one-step programming process. J Mater Chem A 2:10169–10181

    Article  Google Scholar 

  26. Chen SJ, Mo FN, Chen SG, Ge ZC, Yang HP, Zuo JD, Liu XK, Zhuo HT (2015) New insights into multi-shape memory behaviours and liquid crystalline properties of supramolecular polyurethane complexes based on pyridine-containing polyurethane and 4-octyldecyloxybenzoic acid. J Mater Chem A 3:19525–19538

    Article  Google Scholar 

  27. Ban J, Zhu L, Chen SJ, Wang YP (2016) The impact of liquid crystal fillers on structure and properties of liquid-crystalline shape-memory polyurethane composites I: 4-dodecyloxybenzoic acid. J Mater Sci 51:10229–10244. doi:10.1007/s10853-016-0251-7

    Article  Google Scholar 

  28. Mo FN, Zhou FX, Chen SJ, Yang HP, Ge ZC, Chen SG (2015) Development of shape memory polyurethane based on polyethylene glycol and liquefied 4,4 ‘-diphenylmethane diisocyanate using a bulk method for biomedical applications. Polym Int 64:477–485

    Article  Google Scholar 

  29. Nosikova LA, Kudryashova ZA, Iskhakova LD, Tsivadze AY (2007) Solid-phase polymorphism of p-n-hexyloxy- and p-n-heptyloxybenzoic acids. Russ J Phys Chem A 81:1263–1266

    Article  Google Scholar 

  30. Shatalova AM, Kresse H, Shandryuk GA, Bondarenko GN, Kuptsov SA, Talroze RV (2004) The role of the alien proton acceptor on the formation of LC structure in H-bonded monomeric and polymeric derivatives of alkoxybenzoic acids. J Mol Struct 708:7–14

    Article  Google Scholar 

  31. Chen H, Liu Y, Gong T, Wang L, Zhao K, Zhou S (2013) Use of intermolecular hydrogen bonding to synthesize triple-shape memory supermolecular composites. RSC Adv 3:7048–7056

    Article  Google Scholar 

  32. Zhu Y, Hu J, Choi K-F, Meng Q, Chen S, Yeung K-W (2008) Shape memory effect and reversible phase crystallization process in SMPU ionomer. Polym Adv Technol 19:328–333

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61425007, 61377090, and 61575128), the Natural Science Foundation of Guangdong (Grant Nos. 2014A030313559, 2016A030313050), the Special Research Foundation of Shenzhen Overseas High-level Talents for Innovation and Entrepreneurship (Grant No. KQCX20120807153115869), the Nanshan District Key Lab for Biopolymers and Safety Evaluation (No. KC2014ZDZJ0001A), the Science and Technology Project of Shenzhen City (Grant Nos. JCYJ20140828163633993, ZDSYS201507141105130, CYZZ20150827160341635).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaojun Chen or Yiping Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, J., Zhu, L., Chen, S. et al. The effect of liquid crystal fillers on structure and properties of liquid crystalline shape memory polyurethane composites II: 4-hexadecyloxybenzoic acid. J Mater Sci 52, 2628–2641 (2017). https://doi.org/10.1007/s10853-016-0554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0554-8

Keywords

Navigation