Skip to main content
Log in

The Hyperconjugation and the Trans Bent Structure of A =A (A =C, Si,..., Pb) Double Bond, from Dimetallene A 2 H 4 to Nanosystems

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The trans-bent structure of the A =A (A of 14 th group elements) double bond neighbourhood is reinvestigated at a high level of theory. The hyperconjugation phenomenon is rationalised on going from C to Pb in dimetallene A 2 R 4 systems. This phenomenon also exhibits conjugated behaviour in larger systems having conjugated double bonds like congeners of polyenes, graphene, and fullerene. Behind this phenomenon is the electronic delocalisation from occupied orbitals σ, π and LP to virtual ones π *, σ * and LP* respectively. In this study we have meticulously analysed the geometrical and electronic structures by performing optimisation at high level of computation like B3LYP/6-311 + G(3df,2p) and B3LYP/LANL2DZ and electronic distribution NBO model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. West R, Fink MJ, Michl J (1981) Science 214:1343–1344

    Article  CAS  Google Scholar 

  2. Brook AG, Abdesaken F, Gutekunst B, Gutekunst G, Kallury R (1981 ) J Chem Soc Chem Commun:191–192

  3. Jutzi P (1975) Ang Chem Int Ed Eng 14:232–245

    Article  Google Scholar 

  4. Lischka H, Kohler HJ (1982) Chem Phys Lett 85:467–471

    Article  CAS  Google Scholar 

  5. Kohler HJ, Lischka H (1983 ) Chem Phys Lett 98:454–456

    Article  Google Scholar 

  6. Olbrich G (1986) Chem Phys Lett 130:115–119

    Article  CAS  Google Scholar 

  7. Jacobsen H, Ziegler T (1994) J Am Chem Soc 116:3667–3679

    Article  CAS  Google Scholar 

  8. Windus TL, Gordon MS (1992) J Am Chem Soc 114: 9559–9568

    Article  CAS  Google Scholar 

  9. Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81: 6026–6033

    Article  Google Scholar 

  10. Apeloig Y, Karni M (1998) The chemistry of organic silicon compounds, Vol 2. John Wiley

  11. Rappoport Z, Apeloig Y (2001) The Chemistry of Organic Silicon Compounds, Vol 3. John Wiley

  12. Okazaki R, West R (1996) Adv Organomet Chem 39:231–273

    CAS  Google Scholar 

  13. Baines K, Stibbs WG (1996) Adv Organomet Chem 39: 275–324

    CAS  Google Scholar 

  14. Lee VY, Fukawa T, Nakamoto M, Sekiguchi A, Tumanskii BL, Karni M, Apeloig Y (2006) J Am Chem Soc 128:11643–11651

    Article  CAS  Google Scholar 

  15. Grev RS (1991) Adv Organomet Chem 33:125–170

    CAS  Google Scholar 

  16. Strümann M , Saak W, Marsmann H, Weidenbruch M (1999) Angew Chem Int Ed 38:187–189

    Article  Google Scholar 

  17. Strümann M, Saak W, Marsmann H, Weidenbruch M, Klinkhammer KW (1999) Eur J Inorg Chem:579–582

  18. Trinquier G, Malrieu JP, Rivière P (1982) J Am Chem Soc 104:4529–4533

    Article  CAS  Google Scholar 

  19. Trinquier G, Malrieu JP (1987) J Am Chem Soc 109:5303–5315

    Article  CAS  Google Scholar 

  20. Jutzi P (2003) USchubert, Silicon Chemistry: From the Atom to Extended Systems. WILEY–VCH Verlag GmbH & Co KGaA

  21. Symons MCR (1962) Tetrahedron 18:333–341

    Article  CAS  Google Scholar 

  22. Vollhardt KPC, Schore NE (1994) Organic Chemistry. WH Freeman and Company, 2nd edition, New York, p 76. 3

  23. Goldberg DE, Hitchcock PB, Lappert MF, Thomas KM, Thorne AJ, Fjeldberg T, Haaland A, Schilling BER (1986) J Chem Soc Dalton Trans 2387

  24. Malrieu JP, Trinquier G (1989) J Am Chem Soc 111:5916–5921

    Article  CAS  Google Scholar 

  25. Trinquier G, Malrieu JP (1990) J Phys Chem 94:6184–6196

    Article  CAS  Google Scholar 

  26. Kira M (2011) Organometallics 30:4459–4465

    Article  CAS  Google Scholar 

  27. Gaussian 09, Revision A02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi MJ, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R , Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA , Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009). Gaussian Inc , Wallingford CT

  28. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  29. Lee C, Yan W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  30. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80: 3265–3269

    Article  CAS  Google Scholar 

  31. Curtiss LA, McGrath MP, Blaudeau JP, Davis NE, Binning RC Jr, Radom L (1995) J Chem Phys 103:6104–6113

    Article  CAS  Google Scholar 

  32. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  33. Fukui K (1981) Acc Chem Res 14:363–68

    Article  CAS  Google Scholar 

  34. Glending ED, Badenhoop JK, Reed AE NBO 4.0 module of the Gaussian09

  35. Aufray B, Kara A, Vizzini S, Oughaddou H, Le´andri C, Ealet B, Le Lay G (2010) Appl Phys Lett 96 :183102–183103

    Article  Google Scholar 

  36. Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B (2010) Appl Phys Lett 97:223109–223111

    Article  Google Scholar 

  37. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio MC, Resta A, Ealet B, Le Lay G (2012). Phys Rev Lett 108:155501–155506

    Article  Google Scholar 

  38. Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Nano Lett 12:3507–3511

    Article  CAS  Google Scholar 

  39. Lin CL, Arafune R, Kawahara K, Tsukahara N, Minamitani E, Kim Y, Kawai N, Kawai M (2012) Appl Phys Express 5:045802–045804

    Article  Google Scholar 

  40. Jamgotchian H, Colignon Y, Hamzaoui N, Ealet B, Hoarau JY, Aufray B, Biberian JP (2012 ) J Phys Condens Matter 24: 172001–172007

    Article  CAS  Google Scholar 

  41. Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Takamura YY (2012) Phys Rev Lett 108:245501–245505

    Article  Google Scholar 

  42. Chiappe D, Grazianetti C, Tallarida G, Fanciulli M, Molle A (2012) Adv Materials 24:5088–5093

    Article  CAS  Google Scholar 

  43. Meng L, Wang Y, Zhang L, Du S, Wu R, Li L, Zhang Y, Li G, Zhou H, Hofer WA, Gao HJ (2013) Nano Lett 13:685–690

    Article  CAS  Google Scholar 

  44. Cahangirov S, Topsakal M, Aktürk E, Sahin H, Ciraci1 S (2009) Phys Rev Lett 102:236804–236807

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdellah Jarid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choukri, H., Chataoui, H., Cherqaoui, D. et al. The Hyperconjugation and the Trans Bent Structure of A =A (A =C, Si,..., Pb) Double Bond, from Dimetallene A 2 H 4 to Nanosystems. Silicon 8, 455–460 (2016). https://doi.org/10.1007/s12633-015-9285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9285-8

Keywords

Navigation