Skip to main content

Advertisement

Log in

Pharmacologic Studies of a Prodrug of Mitomycin C in Pegylated Liposomes (Promitil®): High Stability in Plasma and Rapid Thiolytic Prodrug Activation in Tissues

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Pegylated liposomal (PL) mitomycin C lipid-based prodrug (MLP) has recently entered clinical testing. We studied here the preclinical pharmacology of PL-MLP.

Methods

The stability, pharmacokinetics, biodistribution, and other pharmacologic parameters of PL-MLP were examined. Thiolytic cleavage of MLP and release of active mitomycin C (MMC) were studied using dithiothreitol (DTT), and by incubation with tissue homogenates.

Results

MLP was incorporated in the bilayer at 10% molar ratio with nearly 100% entrapment efficiency, resulting in a formulation with high plasma stability. In vitro, DTT induced cleavage of MLP with predictable kinetics, generating MMC and enhancing pharmacological activity. A long circulation half-life of MLP (10–15 h) was observed in rodents and minipigs. Free MMC is either extremely low or undetectable in plasma. However, urine from PL-MLP injected rats revealed delayed but significant excretion of MMC indicating in vivo activation of MLP. Studies in mice injected with H3-cholesterol radiolabeled PL-MLP demonstrated relatively greater tissue levels of H3-cholesterol than MLP. MLP levels were highest in tumor and spleen, and very low or undetectable in liver and lung. Rapid cleavage of MLP in various tissues, particularly in liver, was shown in ex-vivo experiments of PL-MLP with tissue homogenates. PL-MLP was less toxic in vivo than equivalent doses of MMC. Therapeutic studies in C26 mouse tumor models demonstrated dose-dependent improved efficacy of PL-MLP over MMC.

Conclusions

Thiolytic activation of PL-MLP occurs in tissues but not in plasma. Liposomal delivery of MLP confers a favorable pharmacological profile and greater therapeutic index than MMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig 10

Similar content being viewed by others

Abbreviations

Chol:

Cholesterol

DTT:

Dithiothreitol

HSPC:

Hydrogenated soybean phosphatidylcholine

IPA:

Isopropyl alcohol

MLP:

Mitomycin c lipid-based prodrug

MMC:

Mitomycin c

mPEG2000-DSPE:

methoxy-polyethylene glycol (2000)-phosphatidylethanolamine

MTD:

Maximal tolerated dose

PDI:

Polydispersity index

PK:

Pharmacokinetic(s)

PLD:

Pegylated liposomal doxorubicin

PL-MLP:

Pegylated liposomal mitomycin c lipid-based prodrug

References

  1. Doll DC, Weiss RB, Issell BF. Mitomycin: ten years after approval for marketing. J Clin Oncol. 1985;3:276–86.

    CAS  PubMed  Google Scholar 

  2. Sartorelli AC, Hodnick WF, Belcourt MF, Tomasz M, Haffty B, Fischer JJ, et al. Mitomycin C: a prototype bioreductive agent. Oncol Res. 1994;6:501–8.

    CAS  PubMed  Google Scholar 

  3. Paz MM, Zhang X, Lu J, Holmgren A. A new mechanism of action for the anticancer drug mitomycin C: mechanism-based inhibition of thioredoxin reductase. Chem Res Toxicol. 2012;25:1502–11.

    Article  CAS  PubMed  Google Scholar 

  4. Tomasz M. Mitomycin C: small, fast and deadly (but very selective). Chem Biol. 1995;2:575–9.

    Article  CAS  PubMed  Google Scholar 

  5. Villarroel MC, Rajeshkumar NV, Garrido-Laguna I, De Jesus-Acosta A, Jones S, Maitra A, et al. Personalizing cancer treatment in the age of global genomic analyses: PALB2 gene mutations and the response to DNA damaging agents in pancreatic cancer. Mol Cancer Ther. 2011;10:3–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Valavaaraand R, Nordman E. Renal complications of mitomycin C therapy with special reference to the total dose. Cancer. 1985;55:47–50.

    Article  Google Scholar 

  7. Ihnat MA, Nervi AM, Anthony SP, Kaltreider RC, Warren AJ, Pesce CA, et al. Effects of mitomycin C and carboplatin pretreatment on multidrug resistance-associated P-glycoprotein expression and on subsequent suppression of tumor growth by doxorubicin and paclitaxel in human metastatic breast cancer xenografted nude mice. Oncol Res. 1999;11:303–10.

    CAS  PubMed  Google Scholar 

  8. Bass PD, Gubler DA, Judd TC, Williams RM. Mitomycinoid alkaloids: mechanism of action, biosynthesis, total syntheses, and synthetic approaches. Chem Rev. 2013;113:6816–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Gabizon AA, Tzemach D, Horowitz AT, Shmeeda H, Yeh J, Zalipsky S. Reduced toxicity and superior therapeutic activity of a mitomycin C lipid-based prodrug incorporated in pegylated liposomes. Clin Cancer Res. 2006;12:1913–20.

    Article  CAS  PubMed  Google Scholar 

  10. Zalipsky S, Saad M, Kiwan R, Ber E, Yu N, Minko T. Antitumor activity of new liposomal prodrug of mitomycin C in multidrug resistant solid tumor: insights of the mechanism of action. J Drug Target. 2007;15:518–30.

    Article  CAS  PubMed  Google Scholar 

  11. Nguyen P, Awwad RT, Smart DD, Spitz DR, Gius D. Thioredoxin reductase as a novel molecular target for cancer therapy. Cancer Lett. 2006;236:164–74.

    Article  CAS  PubMed  Google Scholar 

  12. Biaglowand JE, Miller RA. The thioredoxin reductase/thioredoxin system: novel redox targets for cancer therapy. Cancer Biol Ther. 2005;4:6–13.

    Google Scholar 

  13. Lincoln DT, Ali Emadi EM, Tonissen KF, Clarke FM. The thioredoxin-thioredoxin reductase system: over-expression in human cancer. Anticancer Res. 2003;23:2425–33.

    CAS  PubMed  Google Scholar 

  14. Powisand G, Kirkpatrick DL. Thioredoxin signaling as a target for cancer therapy. Curr Opin Pharmacol. 2007;7:392–7.

    Article  Google Scholar 

  15. Powis G, Mustacich D, Coon A. The role of the redox protein thioredoxin in cell growth and cancer. Free Radic Biol Med. 2000;29:312–22.

    Article  CAS  PubMed  Google Scholar 

  16. Gabizon A, Amitay Y, Tzemach D, Gorin J, Shmeeda H, Zalipsky S. Therapeutic efficacy of a lipid-based prodrug of mitomycin C in pegylated liposomes: studies with human gastro-entero-pancreatic ectopic tumor models. J Control Release. 2012;160:245–53.

    Article  CAS  PubMed  Google Scholar 

  17. Golan T, Grenader T, Ohana P, Amitay Y, Shmeeda H, La-Beck NM, et al. Pegylated liposomal mitomycin C prodrug enhances tolerance of mitomycin C: a phase 1 study in advanced solid tumor patients. Cancer Med. 2015;4:1472–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Shmeeda H, Even-Chen S, Honen R, Cohen R, Weintraub C, Barenholz Y. Enzymatic assays for quality control and pharmacokinetics of liposome formulations: comparison with nonenzymatic conventional methodologies. Methods Enzymol. 2003;367:272–92.

    Article  CAS  PubMed  Google Scholar 

  19. Shmeeda H, Amitay Y, Gorin J, Tzemach D, Mak L, Ogorka J, et al. Delivery of zoledronic acid encapsulated in folate-targeted liposome results in potent in vitro cytotoxic activity on tumor cells. J Control Release. 2010;146:76–83.

    Article  CAS  PubMed  Google Scholar 

  20. Derksen JT, Morselt HW, Scherphof GL. Uptake and processing of immunoglobulin-coated liposomes by subpopulations of rat liver macrophages. Biochim Biophys Acta. 1988;971:127–36.

    Article  CAS  PubMed  Google Scholar 

  21. Paz MM. Cross-linking of dithiols by mitomycin C. Chem Res Toxicol. 2010;23:1384–92.

    Article  CAS  PubMed  Google Scholar 

  22. Verweijand J, Pinedo HM. Mitomycin C: mechanism of action, usefulness and limitations. Anticancer Drugs. 1990;1:5–13.

    Article  Google Scholar 

  23. Adler-Mooreand J, Proffitt RT. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J Antimicrob Chemother. 2002;49 Suppl 1:21–30.

    Article  Google Scholar 

  24. Kratz F, Warnecke A, Scheuermann K, Stockmar C, Schwab J, Lazar P, et al. Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives. Improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound. J Med Chem. 2002;45:5523–33.

    Article  CAS  PubMed  Google Scholar 

  25. Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin Pharmacokinet. 2003;42:419–36.

    Article  CAS  PubMed  Google Scholar 

  26. Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E. The effects of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology. 2011;22:115101.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Ali Khanand H, Mutus B. Protein disulfide isomerase a multifunctional protein with multiple physiological roles. Front Chem. 2014;2:70.

    Google Scholar 

  28. Paz MM. Reductive activation of mitomycin C by thiols: kinetics, mechanism, and biological implications. Chem Res Toxicol. 2009;22:1663–8.

    Article  CAS  PubMed  Google Scholar 

  29. Lang W, Mao J, Doyle TW, Almassian B. Isolation and identification of urinary metabolites of porfiromycin in dogs and humans. Drug Metab Dispos. 2000;28:899–904.

    CAS  PubMed  Google Scholar 

  30. Maeda H, Nakamura H, Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev. 2013;65:71–9.

    Article  CAS  PubMed  Google Scholar 

  31. Gabizon A, Shmeeda H, Grenader T. Pharmacological basis of pegylated liposomal doxorubicin: impact on cancer therapy. Eur J Pharm Sci. 2012;45:388–98.

    Article  CAS  PubMed  Google Scholar 

  32. Pennington JD, Jacobs KM, Sun L, Bar-Sela G, Mishra M, Gius D. Thioredoxin and thioredoxin reductase as redox-sensitive molecular targets for cancer therapy. Curr Pharm Des. 2007;13:3368–77.

    Article  CAS  PubMed  Google Scholar 

  33. Arnerand ES, Holmgren A. The thioredoxin system in cancer. Semin Cancer Biol. 2006;16:420–6.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

Supported by the Israel Cancer Research Fund and by Lipomedix Pharmaceuticals Ltd. Special thanks to Sharon Wolf for TEM imaging at the Irving and Cherna Moskowitz Center for Nano and Bio-Nano Imaging of the Weizmann Institute of Science.

Alberto Gabizon is director and founder of Lipomedix Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Gabizon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amitay, Y., Shmeeda, H., Patil, Y. et al. Pharmacologic Studies of a Prodrug of Mitomycin C in Pegylated Liposomes (Promitil®): High Stability in Plasma and Rapid Thiolytic Prodrug Activation in Tissues. Pharm Res 33, 686–700 (2016). https://doi.org/10.1007/s11095-015-1819-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1819-7

KEY WORDS

Navigation