Skip to main content
Browse by:
GROUP

Heavy Quark Dynamics in the QGP and Temperature Dependence of the Interaction within a Langevin and a Boltzmann Approach

Event Image
Tuesday, January 26, 2016
3:30 pm - 4:30 pm
Francesco Scardina (Catania)
Triangle Nuclear Theory Colloquium

One of the primary aims of the ongoing nuclear collisions at Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies is to create a Quark Gluon Plasma (QGP). The heavy quarks (HQ), charm and bottom constitutes a unique probe of the QGP properties. Both at RHIC and LHC energies a puzzling relation between the nuclear modification factor R_AA(p_T) and the elliptic flow v_2(p_T) related to heavy quark has been observed which challenged all the existing models. We discuss, within a Langevin and a Boltzamann approach, how the temperature dependence of the heavy quark drag coefficient is responsible to address for a large part of such a puzzle. We point out that for the same R_AA(p_T) one can generate 2-3 times more v_2 depending on the temperature dependence of the heavy quark drag coefficient. A drag coefficient which increases as the temperature approaches to the critical value (T_c) is a major ingredient for a simultaneous description of R_AA(p_T) and v_2(p_T). The impact of differen realization of the fluctuation-dissipation theorem on the HQ observables including the heavy-flavor pair correlations will be also addressed.

Contact: Jennifer Solis