New study predicts future Antarctic ice loss

Typography

A new international study is the first to use a high-resolution, large-scale computer model to estimate how much ice the West Antarctic Ice Sheet could lose over the next couple of centuries, and how much that could add to sea-level rise. The results paint a clearer picture of West Antarctica’s future than was previously possible. The study has been published in The Cryosphere, an open access journal of the European Geosciences Union (EGU).

“The IPCC’s [Intergovernmental Panel on Climate Change] 4th and 5th Assessment Reports both note that the acceleration of West Antarctic ice streams in response to ocean warming could result in a major contribution to sea-level rise, but that models were unable to satisfactorily quantify that response,” says Stephen Cornford, a research assistant at the University of Bristol, UK and lead-author of the study.

A new international study is the first to use a high-resolution, large-scale computer model to estimate how much ice the West Antarctic Ice Sheet could lose over the next couple of centuries, and how much that could add to sea-level rise. The results paint a clearer picture of West Antarctica’s future than was previously possible. The study has been published in The Cryosphere, an open access journal of the European Geosciences Union (EGU).

“The IPCC’s [Intergovernmental Panel on Climate Change] 4th and 5th Assessment Reports both note that the acceleration of West Antarctic ice streams in response to ocean warming could result in a major contribution to sea-level rise, but that models were unable to satisfactorily quantify that response,” says Stephen Cornford, a research assistant at the University of Bristol, UK and lead-author of the study.

The work is a legacy of the ice2sea project, an EU funded programme which developed techniques and data to reduce uncertainty in the future contribution to sea level rise of melting ice in the polar regions. Prof. David Vaughan, Director of Science at British Antarctic Survey (BAS), was co-ordinator of the programme. He is also a co-author on the paper:

“This is our best effort yet to include all the key processes and all the main techniques developed during ice2sea, in one state-of-the-art ice sheet model of the most vulnerable part of Antarctica. Its results are within the range of the last IPCC projections, but we have even greater confidence in these projections of sea-level rise”.

West Antarctica is one of the fastest warming regions on Earth and its ice sheet has been stage to dramatic thinning in recent years. The West Antarctic Ice Sheet (WAIS) is out of balance because it is losing significant amounts of ice to the ocean, with the losses not being offset by snowfall. The lost ice, drained by the ice sheet’s several ice streams, amounts to a significant contribution to sea-level rise, which is expected to increase in the future.

Antarctic Penguin image via Shutterstock.

Read more at British Antarctic Survey.