Skip to main content
Log in

Monte Carlo simulation of the structure of mono- and bidisperse polyethylene nanocomposites

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The structure of bidisperse polyethylene (PE) nanocomposite mixtures of 50:50 (by mole) of long and short chains of C160H322/C80H162 and C160H322/C40H82 filled with spherical nanoparticles were investigated by a coarse-grained, on lattice Monte Carlo method using rotational isomeric state theory for short-range and Lennard-Jones for long-range energetic interactions. Simulations were performed to evaluate the effect of wall-to-wall distance between fillers (D), polymer-filler interaction (w) and polydispersity (number of short chains in the mixture) on the behavior of the long PE chains. The results indicate that long chain conformation statistics remain Gaussian regardless of the effects of confinement, interaction strength and polydispersity. The various long PE subchain structures (bridges, dangling ends, trains, and loops) are influenced strongly by confinement whereas monomer-filler interaction and polydispersity did not have any impact. In addition, the average number of subchain segments per filler in bidisperse PE nanocomposites decreased by about 50% compared to the nanocomposite system with monodisperse PE chains. The presence of short PE chains in the polymer matrix leads to a reduction of the repeat unit density of long PE chains at the interface suggesting that the interface is preferentially populated by short chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koo, J.H., “Polymer Nanocomposites. In Nanoscience and Technology”, Manasreh, O., Ed., McGraw-Hill: New York, 2006

  2. Allegra, G., Raos, G. and Vacatello, M., Prog. Polym. Sci., 2008, 33: 683

    Article  CAS  Google Scholar 

  3. Guth, E., J. Appl. Phys., 1945, 16: 20

    Article  CAS  Google Scholar 

  4. Zhang, Q. and Archer, L., Langmuir, 2002, 18: 10435

    Article  CAS  Google Scholar 

  5. Coleman, J.N., Khan, U. Blau, W.J. and Gun’ko, Y.K., Carbon, 2006, 44: 1624

    Article  CAS  Google Scholar 

  6. Ng, C., Schadler, L.S. and Siegel, R.W., J. Nanostructured Mater., 1999, 12: 507

    Article  Google Scholar 

  7. Sheng, N., Boyce, M.C., Parks, D.M., Rutledge, G.C., Abes, J.I. and Cohen, R.E., Polymer, 2004, 45: 487

    Article  CAS  Google Scholar 

  8. Flandin, L., Brechet, Y. and Caviale, J.Y., Compos. Sci. Technol., 2001, 61: 895

    Article  CAS  Google Scholar 

  9. Anderson, B.J. and Zukoski, C.F., Langmuir, 2010, 26: 8709

    Article  CAS  Google Scholar 

  10. Dionne, P.J., Ozisik, R. and Picu, C.R., Macromolecules, 2005, 38: 9351

    Article  CAS  Google Scholar 

  11. Ozmusul, M.S., Picu, C.R., Sternstein, S.S. and Kumar, S. K., Macromolecules, 2005, 38: 4495

    Article  CAS  Google Scholar 

  12. Sarvestani, A.S. and Picu, C.R., Polymer, 2004, 45: 7779

    Article  CAS  Google Scholar 

  13. Reichert, W.F. Goritz, D. and Duschl, E.J., Polymer, 1993, 34: 1216

    Article  CAS  Google Scholar 

  14. Zeng, Q.H., Yu, A.B. and Lu, G.Q., Prog. Polym. Sci., 2008, 33: 191

    Article  CAS  Google Scholar 

  15. Jang, J.H. and Mattice, W.L., Macromolecules, 2000, 33: 1467

    Article  CAS  Google Scholar 

  16. Kloczkowski, A., Sharaf, M.A. and Mark, J.E., Chem. Eng. Sci., 1994, 49: 2889

    Article  CAS  Google Scholar 

  17. Vacattello, M., Macromolecules, 2001, 34: 1946

    Article  Google Scholar 

  18. Picu, R.C. and Ozmusul, M.S., J. Chem. Phys., 2003, 118: 11239

    Article  CAS  Google Scholar 

  19. Vacatello, M., Macromol. Theory Simul., 2003, 12: 86

    Article  CAS  Google Scholar 

  20. Starr, F.W., Schrøder, T.B. and Glotzer, S.C., Macromolecules, 2002, 35: 4481

    Article  CAS  Google Scholar 

  21. Desai, T., Keblinski, P. and Kumar, S., J. Chem. Phys., 2005, 122: 134910

    Article  Google Scholar 

  22. Steinstein, S.S. and Zhu, A., Macromolecules, 2002, 35: 7262

    Article  Google Scholar 

  23. Dionne, P.J., Ozisik, R. and Picu, C.R., “Polyolefin Composites”, Ed. by Nwabunma, D. and Kyu, T., John Wiley & Sons, Inc., Canada, 2008

  24. Landau, D.P. and Binder, K., “A guide to Monte Carlo simulation in statistical physics 2nd ed.”, Cambridge university press, New York, 2000

    Google Scholar 

  25. Xu, G. and Mattice, W.L., Comp. Theor. Polym. Sci., 2001, 11: 405

    Article  CAS  Google Scholar 

  26. Jang, J.H., Ozisik, R. and Mattice, W.L., Macromolecules, 2000, 33: 7663

    Article  CAS  Google Scholar 

  27. Chen, X., Kumar, S. and Ozisik, R., J. Polym. Sci., Part B: Polym. Phys., 2006, 44: 3453

    Article  CAS  Google Scholar 

  28. Vao-Soongnern, V., Xu, G. and Mattice, W.L., Macromol. Theory Sim., 2004, 13: 539

    Article  CAS  Google Scholar 

  29. Vao-Soongnern, V., Ozisik, R. and Mattice, W.L., Macromol. Theory Sim., 2001, 10: 553

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Visit Vao-soongnern.

Additional information

This work was financially supported by the Commission on Higher Education under the program Strategic Scholarships for Frontier Research Network for the Ph.D. Program. All of this work was done at Suranaree University of Technology (SUT), Thailand. AT and VV would like to thank SUT-HPCC (SUT High Performance Computer Cluster) for computational resources. RO would like to thank support provided by the National Science Foundation (Nos. 1200270 and 1003574). AT, RO and VV have contributed to this work as 50%, 20% and 30%, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takhulee, A., Ozisik, R. & Vao-soongnern, V. Monte Carlo simulation of the structure of mono- and bidisperse polyethylene nanocomposites. Chin J Polym Sci 33, 275–283 (2015). https://doi.org/10.1007/s10118-015-1578-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-015-1578-2

Keywords

Navigation