1. Marianne De Paepe
  2. Marie-Agnès Petit  Is a corresponding author
  1. Micalis Institute, France

Bacteriophages are viruses that prey on bacteria. Also known as phages, they can multiply very quickly—hundreds of new viruses can be produced in a single infected bacterium in less than 30 minutes. However, relatively little is known about the impact of phage predation on human-associated bacteria in general, and even less on bacterial pathogens. Now, in eLife, Andrew Camilli of Tufts University School of Medicine and co-workers in Canada, Haiti and the United States, provide molecular evidence that phages prey on a bacterial pathogen during the course of an infection in humans (Seed et al., 2014).

Vibrio cholerae is the bacterium responsible for cholera. After being ingested, typically by drinking contaminated water, it multiplies in the digestive tract where it releases a toxin. This toxin causes profuse and watery diarrhoea, dehydration and death in 50% of cases if rehydration therapy is not administered.

In the delta region of the river Ganges in Bangladesh and India, cholera epidemics occur every year, and follow regular seasonal cycles. It has been proposed that this seasonal variation might be partly related to phages preying on the V. cholera bacteria—as the so-called vibriophages are most common in environmental waters at the end of the cholera season (Faruque et al., 2005a, 2005b).

Camilli and co-workers—including Kimberley Seed as the first author—report molecular data that indicate that vibriophages may preferentially prey on bacteria in the digestive tract of patients with cholera, rather than in environmental waters (Seed et al., 2014). Seed et al. looked at stool samples from two cholera patients (one from Haiti, one from Bangladesh) who had high viral loads of a type of vibriophage called ICP2. In each sample, they discovered that some of the bacteria were resistant to the phage, while the rest were sensitive to it. Then, Seed et al. sequenced the whole genomes of bacterial clones and discovered that the only differences between the phage-resistant and phage-sensitive isolates in each patient were clustered into a single gene. However, a different bacterial gene was mutated in each patient. Several different mutants of each gene were found. This strongly suggests that these mutations occurred, and were then selected for, in bacteria in the patient during the infection.

In the Haitian patient, almost all (> 99%) of the bacteria isolated were resistant to the phage; and, of the phage-resistant bacteria tested, all had one of six different mutations in a single gene called ompU. The OmpU protein forms a pore in the bacteria’s outer membrane to enable nutrients to be imported into the cell. The bacteria need this protein for their survival both in human hosts and in environmental waters. Since the OmpU mutants are resistant to phage attack, Seed et al.’s findings indicate that the OmpU protein is also used by the vibriophage ICP2 to infect the bacterial cells (i.e. it is also the ‘receptor’ for the ICP2 phage).

Seed et al. show that the selection of OmpU mutants by ICP2 vibriophages is not restricted to this isolated case. Out of a collection of 54 clinical isolates of V. cholerae collected in Bangladesh between 2001 and 2011, 15% have similar phage-resistant mutations in the ompU gene. Seed et al. also found that the changes in the OmpU protein were all in parts of the protein that are exposed on the outside of the bacterial cell; and importantly, that they had very little effect on the fitness of V. cholerae in a range of tests. This is reminiscent of the relationship between the bacterium E. coli and the phage lambda, where mutations in a surface protein can make the bacteria resistant to phage attack. These mutations also occur in a surface-exposed part of the protein and do not affect the other functions of this protein (Gehring et al., 1987; Hofnung, 1995). However, the E. coli/phage lambda studies were performed in the laboratory, whereas this V. cholerae study appears to be the first report that suggests a predator-prey relationship between phage and bacteria in the human intestine.

In the stool sample from the Bangladeshi patient, 22% of bacterial isolates were resistant to the ICP2 phage; and Seed et al. identified four different genetic changes that made the bacteria able to resist this phage attack. All of these mutations were in a gene called toxR, which encodes a protein that regulates the expression of numerous genes, including ompU. Since these ToxR mutants do not produce the phage’s receptor—the OmpU protein—this confers resistance to phage attack. However, the ToxR protein also regulates genes that control the virulence of the bacteria, and the ToxR mutants were unable to start new infections in an animal model of cholera. Therefore, in contrast with the OmpU mutants, it is more difficult to unambiguously assign the selection of ToxR mutants as resulting solely from defending against phage attack. Instead the selection of these non-infectious mutants could also be explained by such mutations making it ‘cheaper’ for these bacteria to grow in the digestive tract at the expense of the virulent clones.

Although it is perhaps counterintuitive, mutations that reduce virulence can have a selective advantage during an infection (Diard et al., 2013). Expressing so-called virulence proteins or factors is costly for an individual bacterium, and mutants that stop making these factors can, therefore, benefit at the expense of other bacteria that continue to do so. This advantage, however, is only short-lived as these less virulent mutants are unable to start new infections themselves. Regardless of the precise mechanism, the selection for the non-infectious ToxR mutants observed by Seed et al. suggests that phage predation may have contributed to the collapse of the infection and the selection of less virulent strains.

Finally, the results of Seed et al., together with the previous work by other groups that it builds on, highlight the important role that phages can play in shaping V. cholerae populations. These findings firmly place these viruses as an important ‘third’ party that must also be considered when trying to understand host–pathogen interactions.

References

    1. Gehring K
    2. Charbit A
    3. Brissaud E
    4. Hofnung M
    (1987)
    Bacteriophage lambda receptor site on the Escherichia coli K-12 LamB protein
    Journal of Bacteriology 169:2103–2106.

Article and author information

Author details

  1. Marianne De Paepe

    French National Institute for Agricultural Research and AgroParisTech, Micalis Institute, Jouy-en-Josas, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Marie-Agnès Petit

    French National Institute for Agricultural Research and AgroParisTech, Micalis Institute, Jouy-en-Josas, France
    For correspondence
    marie-agnes.petit@jouy.inra.fr
    Competing interests
    The authors declare that no competing interests exist.

Publication history

  1. Version of Record published: September 2, 2014 (version 1)

Copyright

© 2014, De Paepe and Petit

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,057
    views
  • 82
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marianne De Paepe
  2. Marie-Agnès Petit
(2014)
Phage Predation: Killing the killers
eLife 3:e04168.
https://doi.org/10.7554/eLife.04168
  1. Further reading

Further reading

    1. Microbiology and Infectious Disease
    Ryan Thiermann, Michael Sandler ... Suckjoon Jun
    Tools and Resources

    Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.

    1. Microbiology and Infectious Disease
    Nguyen Thi Khanh Nhu, Minh-Duy Phan ... Mark A Schembri
    Research Article

    Neonatal meningitis is a devastating disease associated with high mortality and neurological sequelae. Escherichia coli is the second most common cause of neonatal meningitis in full-term infants (herein NMEC) and the most common cause of meningitis in preterm neonates. Here, we investigated the genomic relatedness of a collection of 58 NMEC isolates spanning 1974–2020 and isolated from seven different geographic regions. We show NMEC are comprised of diverse sequence types (STs), with ST95 (34.5%) and ST1193 (15.5%) the most common. No single virulence gene profile was conserved in all isolates; however, genes encoding fimbrial adhesins, iron acquisition systems, the K1 capsule, and O antigen types O18, O75, and O2 were most prevalent. Antibiotic resistance genes occurred infrequently in our collection. We also monitored the infection dynamics in three patients that suffered recrudescent invasive infection caused by the original infecting isolate despite appropriate antibiotic treatment based on antibiogram profile and resistance genotype. These patients exhibited severe gut dysbiosis. In one patient, the causative NMEC isolate was also detected in the fecal flora at the time of the second infection episode and after treatment. Thus, although antibiotics are the standard of care for NMEC treatment, our data suggest that failure to eliminate the causative NMEC that resides intestinally can lead to the existence of a refractory reservoir that may seed recrudescent infection.